Mark Scheme (Results)

Summer 2017

Pearson Edexcel IAL
In Chemistry (WCH01) Paper 01
The Core Principles of Chemistry

edexcel 坛

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WCH01_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General marking guidance

- This mark scheme provides a list of acceptable answers for this paper. Candidates will receive credit for all correct responses but will be penalised if they give more than one answer where only one is required (e.g. putting an additional cross in a set of boxes). If a candidate produces more written answers than the required number (two instead of one, three instead of two etc), only the first answers will be accepted. Free responses are marked for the effective communication of the correct answer rather than for quality of language but it is possible that, on some occasions, the quality of English or poor presentation can impede communication and loose candidate marks. It is sometimes possible for a candidate to produce a written response that does not feature in the mark scheme but which is nevertheless correct. If this were to occur, an examiner would, of course, give full credit to that answer.
- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Section A (multiple choice)

Question Number	Correct Answer	Mark
$\mathbf{1}$	1. The only correct answer is C \boldsymbol{A} is not correct because $1 \mathrm{~kg}=10^{6} \mathrm{mg}$ so no conversion factor is needed. \boldsymbol{B} is not correct because $1 \mathrm{~kg}=10^{6} \mathrm{mg}$ so no conversion factor is needed. \boldsymbol{D} is not correct because $1 \mathrm{~kg}=10^{6} \mathrm{mg}$ so no conversion factor is needed.	(1)

Question Number	Correct Answer	Mark
$\mathbf{2}$	2. The only correct answer is C \boldsymbol{A} is not correct because this does not count the 3 ions per mol of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ \boldsymbol{B} is not correct because this assumes there are 2 ions per mol of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ \boldsymbol{D} is not correct because this assumes there are 7 ions per mol of $\mathrm{Na}_{2} \mathrm{SO}_{4}$	(1)

Question Number	Correct Answer	Mark
$\mathbf{3}$	3. The only correct answer is D \boldsymbol{A} is not correct because this is based on mass, not mol \boldsymbol{B} is not correct because the Li:O ratio is wrong \boldsymbol{C} is not correct because the Li:P ratio is wrong	$\mathbf{(1)}$

Question Number	Correct Answer	Mark
$\mathbf{4}$	4. The only correct answer is C \boldsymbol{A} is not correct because the mol of O have not been calculated	(1)
\boldsymbol{l} B not correct because the mol of O have not been		
calculated		
D is not correct because the molar ratio Cr:O has been inverted		

Question Number	Correct Answer	Mark
$\mathbf{5}$	5. The only correct answer is A \boldsymbol{B} is not correct because the ratio of $\mathrm{SO}_{2}: \mathrm{SO}_{3}$ is $1: 1$ and oxygen is in excess	(1)
\boldsymbol{C} is not correct because the ratio of $\mathrm{SO}_{2}: \mathrm{SO}_{3}$ is $1: 1$ and oxygen is in excess \boldsymbol{D} is not correct because the ratio of $\mathrm{SO}_{2}: \mathrm{SO}_{3}$ is $1: 1$ and oxygen is in excess		

Question Number	Correct Answer	Mark
$\mathbf{6}$	6. The only correct answer is B	(1)
	\boldsymbol{A} is not correct because Be has no unpaired electrons	
\boldsymbol{C} is not correct because CI has one unpaired p electron		
\boldsymbol{D} is not correct because Ca has no unpaired electrons		

Question Number	Correct Answer	Mark
$\mathbf{7}$	7. The only correct answer is D A is not correct because this ion has 20 protons and S $^{2-}$ has 16	(1)
\boldsymbol{B} is not correct because this ion has 17 protons and S $^{2-}$		
has 16		
\boldsymbol{C} is not correct because this ion has 19 protons and S^{2-} has 16		

Question Number	Correct Answer	Mark
$\mathbf{8}$	8. The only correct answer is D \boldsymbol{A} is not correct because Na^{+}has less polarising power than Al^{3+} \boldsymbol{B} is not correct because Na^{+}has less polarising power than Al^{3+} \boldsymbol{C} is not correct because F^{-}is smaller than I^{-}and less easily polarised	(1)

Question Number	Correct Answer	Mark
$\mathbf{9}$	9. The only correct answer is C \boldsymbol{A} is not correct because electrons are removed from level 2 before level 1 B is not correct because electrons are removed from 2p before 2 s	(1)
\boldsymbol{D} is not correct because electrons are removed from 2s before 1s		

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Mark } \\ \hline \mathbf{1 0 (a)} & \begin{array}{l}\mathbf{1 0 (a) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ B ~} \\ \boldsymbol{A} \text { is not correct because } \mathrm{CaCO}_{3}(s) \text { should not be shown } \\ \text { as separated ions }\end{array} & \text { (1) } \\ \boldsymbol{l} \text { is not correct because } \mathrm{CaCO}_{3}(\mathrm{~s}) \text { should not be shown } \\ \text { as separated ions }\end{array} \begin{array}{l}\begin{array}{l}\text { D is not correct because } \mathrm{CaCl}_{2}(\text { aq }) \text { should be shown as } \\ \text { separated ions and spectators then cancelled out }\end{array}\end{array}\right\}$

Question Number	Correct Answer	Mark
$\mathbf{1 0 (b)}$	$\mathbf{1 0 (b) . ~ T h e ~ o n l y ~ c o r r e c t ~ a n s w e r ~ i s ~ A ~}$ B is not correct because calcium chloride cannot be removed by distillation	(1)
	C is not correct because calcium chloride cannot be removed by distillation	D is not correct because the excess solid calcium carbonate must be removed before evaporating

Question Number	Correct Answer	Mark
$\mathbf{1 0 (c)}$	$\mathbf{1 0 (c) . \text { The only correct answer is B }}$A is not correct because this does not use the molar masses and the value is based on 10.4/14.7 \boldsymbol{C} is not correct because the 2:1 ratio of $\mathrm{HCl}: \mathrm{CaCl}_{2}$ is not used \boldsymbol{D} is not correct because it is not based on the theoretical yield of calcium chloride being 14.7 g	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	11. The only correct answer is C A is not correct because melting temperatures decrease down Group 1 \boldsymbol{B} is not correct because the melting temperature of P is less than Si \mathbf{D} is not correct because the melting temperature of $A r$ is less than the others	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 2}$	12. The only correct answer is C A is not correct because it has used a wrong sign in the calculation and then divided the answer by 2	(1)
B is not correct because it has used a wrong sign in the calculation \boldsymbol{D} is not correct because the wrong sign for enthalpy change has been used		

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	13. The only correct answer is D A is not correct because there are 6 C atoms in the longest chain \boldsymbol{B} is not correct because there are 6 C atoms in the longest chain \boldsymbol{C} is not correct because the chain should be numbered from the end which gives lowest numbers for the side chains	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	14. The only correct answer is B A is not correct because in the double bond the first C atom has 2H attached C is not correct because in the double bond the first C atom has 2Cl attached	(1)
D is not correct because in the double bond one C atom has $2 \mathrm{CH}_{3}$ attached		

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	15. The only correct answer is \mathbf{A} \boldsymbol{B} is not correct because the molecular formula $C_{5} H_{8}$ cannot be simplified	(1)
\boldsymbol{l} is not correct because the molecular formula $C_{5} H_{12}$		
cannot be simplified		
\boldsymbol{D} is not correct because the molecular formula $C_{5} H_{12}$		
cannot be simplified		

\hline\end{array}\right.\)

Question Number	Correct Answer	Mark
16	16. The only correct answer is D A is not correct because hydrogen peroxide does not react with propene to give a diol \boldsymbol{B} is not correct because oxygen and water do not react with propene to give a diol C is not correct because aqueous sodium hydroxide does not react with propene to give a diol	(1)
Question Number	Correct Answer	Mark
17	17. The only correct answer is A \boldsymbol{B} is not correct because bromine, not HBr , is needed to produce dibromopropane C is not correct because bromine, not HBr , is needed to produce bromopropanol D is not correct because bromine water, not HBr , is needed to produce bromopropanol	(1)
Question Number	Correct Answer	Mark
18	18. The only correct answer is B \boldsymbol{A} is not correct because another alkene is required to react with ethene C is not correct because another alkene is required to react with ethene D is not correct because an alkene with 3C atoms is required to react with ethene	(1)

Section B

Question Number	Acceptable Answers	Reject	Mark
19a(i)	$\begin{align*} & \frac{(6.10 \times 54+92.0 \times 56+1.90 \times 57)}{100} \\ & =(5589.7 / 100) \\ & =\mathbf{5 5 . 9} \\ & \text { Final answer must be to } 3 \mathrm{SF} \\ & \text { IGNORE } \\ & \text { Units } \tag{1} \end{align*}$ Correct answer with no working shown scores (2)	55.89/55.90	(2)

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{1 9 a (i i)}$	X F Fe / iron. ALLOW Fe			
	protons electrons neutrons	Fe with negative charge	(2)	
26	25	30		
	MP1 Identity of X and proton number (1) MP2 number of electrons and neutrons No TE for MP2 for wrong element (1)			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 a (i i i)}$	$\mathrm{X}^{2+} / \mathrm{Fe}^{2+}$ forms	Fe^{2-}	(1)
	IGNORE any atomic numbers or mass numbers	$\mathrm{Silicon}, \mathrm{Si}$, $\mathrm{Ni}, \mathrm{Si}^{+}, \mathrm{N}_{2}{ }^{+}$	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 9 a (i v)}$	The isotopes have the same number of electrons (therefore) same number of electrons in outer shell / valence electrons		(2)		
(so the same chemical properties) (1)				\quad	Isotopes have the same electronic
:---					
configuration/structure scores (2)	\quad	IGNORE			
:---					
Same number of protons/ different					
number of neutrons	\quad				
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 b (i)}$	Sample is vaporised / converted to a gas / atomised	'vaporised to form ions'	(2)
	ALLOW sample is sublimed	(Atoms are) bombarded with (high energy) electrons / electron removed with electron gun / electron removed with electron beam (1)	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 b (i i)}$	MP1 Reference to acceleration, deflection, detection in correct order IGNORE Additional comments on vaporisation and ionisation	Incorrect order	Analysing
MP2 and 3 Acceleration: (ions pass through slit in negatively) charged plate / electric field / electronic field	(1)	Just positively charged plate 'electron field'	
Deflection: (ions pass through) a magnetic field ALLOW magnet / electromagnet	(1)		

(Total for Question 19 =12 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 a (i)}$	MP1 Metallic (bonding) and Na has delocalised / mobile electrons / free electrons ALLOW Sea of electrons	Intermolecular forces	(2)
	MP2 (1) attracting the positive ions / attracting the metal ions / attracting the nuclei	Attraction in any sort of bonding other than metallic	
Second mark depends on first	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 a (i i)}$	Ionic bonding and (electrostatic) force /attraction between oppositely charged ions	Intermolecular forces between ions Attraction of differently charged ions	(1)
	OR + and - ions OR	Sodium and bromine	
	Na^{+}and Br^{-}ions		
OR			
cations and anions	brom		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 a}$ (iii)	Ionic (bonding) is stronger than metallic (bonding) (in this case) OR Bonding in NaBr is stronger (than in Na) ALLOW Attraction in NaBr is stronger Reverse argument	Any reference to incorrect types of bonding	(1)

Question Number	Acceptable Answers	Reject	Mark
20a(iv)	Electrical conductivity: Sodium conducts (in solid or liquid state) NaBr does not conduct when solid/ only conducts when molten / in (aqueous) solution OR Thermal conductivity : Na good, NaBr poor Sodium conducts heat is insufficient OR Malleability/ Ductility: Na malleable/ ductile, NaBr brittle ALLOW Hardness Na soft; NaBr harder Density Na low; NaBr higher	(2) conduct heat	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 b (i)}$	Covalent: The (bonding) electrons come (equally) from both atoms (1) Dative covalent: The (bonding) electrons come from one atom\quad (1)		(2)

Question Number	Acceptable Answers	Reject	Mark
20b(ii)	$\left[\begin{array}{c} H \\ H * N * H \\ H^{-x} \end{array}\right]^{+}$ N joined to four H with three correct N H single bonds, i.e. with a dot and a cross Datively covalently bonded H (lone pair on N shared with fourth H) and $\mathrm{a}+$ charge on this $\mathrm{H} /$ on the whole ion / on the N ALLOW 2 crosses for dative bond IGNORE Arrow from N to H indicating dative covalent Lack of square brackets	Just diagram for ammonia	(2)
Question Number	Acceptable Answers	Reject	Mark
20b(iii)	(Electron density contour) lines go round ion and not around other nuclei/ do not overlap/ do not fuse/ do not intercept/ OR There is a gap between particles/ ions with no electron density lines IGNORE Number of circles ALLOW Diagram		(1)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 a (i)}$	Answers between 7000 and 8500, including 7000 and $8500\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		(1)

Question Number	Acceptable Answers	Reject	Mark
21a(ii)	$\begin{aligned} & \mathrm{Mg}^{2+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{3+}(\mathrm{g})+\mathrm{e}^{(-)}((\mathrm{g})) \\ & \text { ALLOW } \\ & \mathrm{Mg}^{2+}(\mathrm{g})-\mathrm{e}^{(-)}((\mathrm{g})) \rightarrow \mathrm{Mg}^{3+}(\mathrm{g}) \end{aligned}$ Gaseous states for both magnesium species Rest of equation correct		(2)

Question	Acceptable Answers			Reject	Mark
21b(i)	(Enthalpy change of)				(3)
	ΔH_{1}	Atomisation of Mg and (2 x) atomisation of $1 / 2$ $\mathrm{Cl}_{2} / \mathrm{Cl} /$ chlorine / Cl_{2}	(1)		
		ALLOW $\Delta H_{\text {at }}$ for (enthalpy change of) atomisation OR Bond enthalpy $\mathrm{Cl}-\mathrm{Cl}$ for ΔH_{at}			
		Ignore state symbols			
	ΔH_{3}	(2x) (first) electron affinity of $\mathrm{Cl} /$ chlorine (2x) EA of Cl	(1)	EA of Cl_{2}	
		ALLOW Electron affinity of 2 Cl			
	ΔH_{5}	$\begin{aligned} & \text { Formation (of } \left.\mathrm{MgCl}_{2}\right) \\ & \Delta H_{\mathrm{f}}\left(\text { of } \mathrm{MgCl}_{2}\right) \\ & \hline \end{aligned}$	(1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 1 b}(\mathbf{i i})$	$(+) 2189\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	$-2189(\mathrm{~kJ}$ $\left.\mathrm{mol}^{-1}\right)$	(1)

Question Number	Acceptable Answers	Reject	Mark
21b(iii)	$\begin{align*} & \Delta H_{4}= \\ & -641.3-(391.1+2189-697.6) \tag{1}\\ & =\mathbf{- 2 5 2 3 . 8} / \mathbf{- 2 5 2 4}\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Final answer without working scores 2 Correct value with + sign scores 1 TE on incorrect value in (b)(ii) for 2 marks: $\begin{aligned} & (\mathrm{b})(\mathrm{ii})=+1451,(\mathrm{~b})(\mathrm{iii})=\mathbf{- 1 7 8 5 . 8} \\ & (\mathrm{b})(\mathrm{ii})=-2189,(\mathrm{~b})(\mathrm{iii})=\mathbf{(+) 1 8 5 4 . 2} \end{aligned}$ If no value has been calculated in (b)(ii), $\Delta H_{4}=-334.8-\Delta H_{2}$ This scores (1)	incorrect unit, but allow the minor slip eg $\mathrm{kJ} \mathrm{mol}^{-}$	(2)

Question Number	Acceptable Answers	Reject	Mark
*21c(i)	Ca atom has a larger radius (than Mg)/ has more electron shells (than Mg)/ has (outer) electrons which are further from nucleus OR The (outer shell) electrons in Ca are more shielded	Ca ions larger Just "Ca is larger (than Mg)" The molecules are larger	(2)
(Outer shell) electrons experience less attraction from the nucleus OR require less energy/ are easier to remove	(1)		
ALLOW reverse argument IGNORE References to charge density			

Question Number	Acceptable Answers	Reject	Mark
*21c(ii)	MP1 Mg^{2+} has higher charge density / same charge but smaller (radius) than $\mathrm{Ca}^{2+} /$ distance between ions is smaller IGNORE Mg^{2+} has higher polarising power than Ca^{2+} MP2 So attracts Cl^{-}more strongly (in MgCl_{2})/ so more energy is released when bond forms MP2 depends on MP1 ALLOW reverse argument	Atomic radius 'attracts chlorine' References to incorrect type of bond/force	(2)

(Total for Question 21 = 13 marks)

Question Number	Acceptable Answers	Reject	Mark
22(a)	Difficult to measure energy supplied/ take measurements while heating (the sample)/ to decide when reaction is complete ALLOW Difficult to measure the temperature of "because a solid requires heating" Difficult to measure heat supplied/ heat absorbed	Because of heat losses	(1)

Question Number	Acceptable Answers	Reject	Mark
22b(i)	To protect from or prevent (the acid/ reaction mixture) spraying/ spitting/ splashing out/ bubbling over/ spilling with reason eg due to excessive frothing / stirring	Just "spilling"	(1)
IGNORE Reaction is vigorous			

Question Number	Acceptable Answers	Reject	Mark	
$\mathbf{2 2 b}(\mathbf{i i})$	Mol $\mathrm{HCl}=(100 \times 1.25 / 1000)$ $=1.25 \times 10^{-1} / \mathbf{0 . 1 2 5}$	(1)		(2)
	Mol $\mathrm{NaHCO}_{3}=(8.0 / 84)$ $=0.095238 / \mathbf{0 . 0 9 5 2}$ Ignore SF except 1 SF	(1)		

Question Number	Acceptable Answers	Reject	Mark
22b(iii)	Energy transferred = ($100 \times 4.18 \times 7.3$) $=3051.4(\mathrm{~J}) / 3.0514 \mathrm{~kJ}$ Ignore sign Ignore SF except 1 or 2 SF $\begin{equation*} \Delta H=+3051.4 \div 0.095238 \tag{1} \end{equation*}$ Allow TE from incorrect NaHCO_{3} from (b) (ii) $\begin{align*} & =+32040 \mathrm{~J} \mathrm{~mol}^{-1} / \tag{1}\\ & \mathbf{+ 3 2 . 0 4 0} / \mathbf{+ 3 2 . 0} \mathrm{kJ} \mathrm{~mol}^{-1} \end{align*}$ ALLOW answers using rounded values of 0.095238 e.g. $+\mathbf{3 2 . 1 2 0} \mathrm{kJ} \mathrm{mol}^{-1}$ if based on 0.095 IGNORE SF Use of 0.125 mol does NOT score MP2, but will score MP3 for $+24.41 \mathrm{~kJ} \mathrm{~mol}^{-1}$		(3)

Question Number	Acceptable Answers	Reject	Mark
22b(iv)	$2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$ in bottom box IGNORE State symbols Two arrows pointing downwards each with 2 HCl OR Two arrows pointing downwards with 2 HCl on each side of the equation in both top boxes ALLOW Right hand arrow pointing upwards and 2 HCl if ($2 x$) (b)(iii) +36.3 used correctly in calculation ΔH for Reaction $1=$ 2x answer to (b)(iii) -(-36.3) $\begin{equation*} =(+) 100.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ If factor of 2 missing in MP3 allow TE in MP4 $=(+) 68.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ TE on incorrect answer to (b)(iii) Answer of +3.05 in (b)(iii) gives (2×3.05 $+36.3)=(+) 42.4\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Answer of +24.41 in (b)(iii) gives (2×24.41 $+36.3)=(+) 85.12\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	Cycles using ΔH_{f}	(4)

(Total for question 22 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
23a(i)	MP1 Diagram with 3 lone pairs of electrons per atom and one shared pair ALLOW All dots or all crosses MP2 One electron from the $\mathrm{Cl}-\mathrm{Cl}$ bond goes to each atom to produce a (free) radical / the bonding electrons are divided equally between the atoms to produce a (free) radical	Just $\mathrm{Cl}-\mathrm{Cl}$ with half arrows	(2)

Question Number	Acceptable Answers	Reject	Mark
23a (ii)	Penalise omission of dots in correct equations only once in (ii) and (iii) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Cl} \bullet \rightarrow \mathrm{HCl}+\mathrm{C}_{2} \mathrm{H}_{5} \bullet$ $\mathrm{C}_{2} \mathrm{H}_{5} \bullet+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Cl} \bullet$ ALLOW \bullet before or after the formula. TE in equation 2 if the wrong hydrocarbon is used (eg methane giving $\left.\mathrm{CH}_{3} \bullet\right)$	(1)	(1)

Question Number	Acceptable Answers	Reject	Mark
23a(iii)	$2 \mathrm{C}_{2} \mathrm{H}_{5} \bullet \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}$	Equations not giving a hydrocarbon	(1)
ALLOW TE from incorrect alkyl radical in (a)(ii) eg $2 \mathrm{CH}_{3} \bullet \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$			

Question Number	Acceptable Answers	Reject	Mark
*23b(i)	MP1 pi bond forms by overlap of \mathbf{p} orbitals. ALLOW Correct labelled diagram MP2	p sub shells / pi orbital	(2)
	Orbital overlap is poor so bond breaks easily OR Orbital overlap is poor as orbitals are parallel / sideways	Just "it is weaker than the sigma bond" without a reason why	
	(Poor overlap must be described, not just drawn)		
OR Region of high electron density makes bond reactive / susceptible to attack by electrophiles			

Question Number	Acceptable Answers	Reject	Mark
*23b(ii)	MP1 Arrow from $\mathrm{C}=\mathrm{C}$ to $\mathrm{Cl}^{\delta+}$ and from $\mathrm{Cl}-\mathrm{Cl}$ bond to $\mathrm{Cl}^{\delta-}$ MP2 Intermediate with + charge, and Cl^{-} MP3 Arrow from anywhere on Cl^{-}to + on C and product (lone pair on Cl^{-}not required) ALLOW TE if partial charges are shown in MP2 (do not penalise these twice) Correct mechanism shown with bromine or HX or an incorrect alkene scores a maximum of 2 marks.	Partial charges on intermediate and chloride No TE from a free radical mechanism	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 3 b (i i i)}$	1,2-dichloroethane	ethene for ethane in the name	(1)

Questio n Number	Acceptable Answers	Rejec t	Mar k
23c	MP1 is for correct structure of monomer and single repeat unit of polymer with continuation bonds MP2 is for n in correct place of both sides of the equation and brackets round repeat unit ALLOW Multiples if balancing is correct in equation Polymer with more than one repeat unit if balanced Continuation bonds which do not go right through the bracket IGNORE Bracket round monomer Shape of brackets		(2)

(Total for Question 23 = 13 marks)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Llywodraeth Cynulliad Cymru
Welsh Assembly Government

Rewarding Learning

